B.L.D.E.ASSOCIATION'S SB ARTS AND K.C.P. SCIENCE COLLEGE, VIJAYAPUR RE-ACCREDITED AT THE 'B++' LEVEL Bachelor of Science

Department of Chemistry

PROGRAM OUTCOMES (2022-2023)

POs	DESCRIPTIONS
P01:	Knowledge: Width and depth:
	Students acquire theoretical knowledge and understanding of the fundamental concepts, principles and processes in main branches of chemistry, namely, organic, inorganic, physical, spectroscopy, analytical and biochemistry. In depth understanding is the outcome of transactional effectiveness and treatment of specialized course contents. Width results from the choice of electives that students are offered.
PO2:	Laboratory Skills: Quantitative, analytical and instrument based:
	A much valued learning outcome of this programme is the laboratory skills that students develop during the course. Quantitative techniques gained through hands on methods opens choice of joining the industrial laboratory work force early on. The programme also provides ample training in handling basic chemical laboratory instruments and their use in analytical and biochemical determinations. Undergraduates on completion of this programme can cross branches to join analytical, pharmaceutical, material testing and biochemical labs besides standard chemical laboratories.
PO3:	Communication:
	Communication is a highly desirable attribute to possess. Opportunities to enhance students' ability to write methodical, logical and precise reports are inherent to the structure of the programme. Techniques that effectively communicate scientific chemical content to large audiences are acquired through oral and poster presentations and regular laboratory report writing.
PO4:	Capacity Enhancement:
	Modern day scientific environment requires students to possess ability to think independently as well as be able to work productively in groups. This requires some degree of balancing. The chemistry honours programme course is designed to take care of this important aspect of student development through effective teaching learning process.
PO5:	Portable Skills:
	Besides communication skills, the programme develops a range of portable or transferable skills in students that they can carry with them to their new work environment after completion of chemistry honours programme. These are problem solving, numeracy and mathematical skills- error analysis, units and conversions, information retrieval skills, IT skills and organizational skills. These are valued across work environments.

Course outcomes

	DADED	COURSE	DESCREPTIONS
CLASS	PAPER	OUTCOMES	This course will enable the students to
			a disconstine of radiation and matter, qua
		CO1	c steen and familiation, up broking
			behaviour of matter and radiation, equations, Heisenberg Uncertainty principle and their
			equations, Heisenberg Officer tailing 1
			related problems. Able to understand Electronic configurations of th
		CO2	Able to understand Electronic comiguration
			atoms.
	Atomic	CO3	Define periodicity, explain the cause of periodicity i
	structure &		properties, and classify the
	Periodicity		elements into four categories according to thei
	of elements		electronic configuration.
		CO4	Define atomic radii, ionisation energy, electron affinity
			and electronegativity, discuss the factors affecting
			atomic radii, describe the relationship of atomic radii
			with ionization energy and electron affinity, describe the periodicity in atomic radii, ionization energy,
			electron affinity and electronegativity.
		CO1	Understand principles of titrimetric analysis.
		CO2	Understand principles of different type's titrations.
			Titration curves for all types of
		200	acids - base titrations. Gain knowledge about balancing redox equations,
B. SC. I SEM	Analytical	CO3	titration curves, theory of redox
(DSC)			indicators and applications.
	chemistry	CO4 -	Understand titration curves, indicators for precipitation
		604	titrations involving silver nitrate-
			Volhard's and Mohr's methods and their differences.
		CO5	Indicators for EDTA titrations - theory of metal ion
			indicators. Determination of hardness
			of water.
		CO1	Explain bond properties, electron displacement effects
			(inductive effect, electrometric effect, resonance effect
			and Hyper conjugation effect). Steric effect and their applications in explaining acidic strength of carboxylic
			acids, basicity of amines.
	Bonding in _	CO2	Understand basic concept of organic reaction
	Organic	CO2	mechanism, types of organic reactions,
	Molecules and		structure, stability and reactivity of reactive
	and Mechanism		intermediates.
	of Organic	CO3	Describe important characteristics of configurationally
	reactions	200	and conformational isomers.
	Ser Statem - PES		Practice and write conformational isomers of ethane,
			butane and cyclohexane.
	Γ	CO4	Understand the various concepts of geometrical isomerism and optical isomerism. Describe CIP rules to
			isomerism and optical isomerism, beserves an

			assign E,Z notations and R&S notations. Explain D and L configuration and three and erythro nomenclature.
		CO5	Explain racemic mixture and racemisation, resolution of racemic mixture through mechanical separation, formation of diastereomers, and biochemical methods, biological significance of chirality.
	-	CO6	Learn to trace some standard curves.
	Gaseous State & Distribution	CO1	Explain the existence of different states of matter in terms of balance between intermolecular forces and thermal energy of the particles.
	Law	CO2	Explain the laws governing
			behavior of ideal gases and real gases.
	-	CO3	Understand cooling effect of gas on adiabatic
		CO4	Describe the conditions required for liquefaction of gases. Realise that there is
		CO5	Explain properties of liquids in terms of intermolecular
		CO1	Understand and practice the calibration of glasswares (burette, pipette, volumetric flask).
		CO2	Basic concepts involved in titrimetric analysis, primary standard substances, preparation of standard solutions.
	CHEMISTRY	CO3	Explain the principles of acid-base, redox and iodometric titrations.
B. SC. I SEM	LAB (Inorganic	CO4	Work out the stoichiometric relations based on the reactions involved in the titrimetric analysis.
(Practical)	and Organic Analyses)	CO5	Based on principles of titrimetric analysis student can perform
	Analyses	C06	Describe the significance of organic quantitative analysis.
		C07	Determine the amount of phenol, aniline, amide, ester and formaldehyde in a given solution by performing blank titration and main titrations
		CO8	Determine aspirin in the tablet by hydrolysis method.
B. SC. I SEM (OEC)	CHEMISTRY IN DAILY LIFE	CO1	Understand the chemical constituents in various day today materials using by a common man.
		CO2	Understand the chemical constituents in fertilizers, insecticides and pesticides, chemical explosives etc.
		CO3	Understand the chemical constituents in polymers, surface coatings etc.
B. SC. II SEM	Chemical bonding,	CO1	Understand the principals of ionic bonding, polarization power.
(DSC2)	molecular	CO2	Explain the principles of covalent bonding

			Little theory
			Explain the principles of molecular orbital theory
	structure	CO3	The concept of mechanism and its importance
	Acidic	COI	Stereoisomersim: and its importance
	Strengths of		Stereoisomersim: The concept of mechanism and its importance arism
	Organic	CO2	The concept of the
	compounds		Geometrical isomerism The concept of mechanism and its importance Optical
	and	CO3	The concept of meeting.
	Stereochemi		Definition, Resolution of racemic mixture by: i
	stry	CO4	Definition, Resolution of Facetime in Mechanical separation ii) Formation of diastereomers
			Mechanical Separation by Comments
			iii) Biochemical methods Review of reaction rates, order and molecularity
		CO5	Review of reaction rates, order dis- Factors affecting rates of reaction: concentration
			Understand the concept Molecular forces and general
		CO6	
			Describe the significance of surface tension, surface
	Chemical	CO1	affact of temperature on surface tension, stay
	Kinetics I,		and the state of coop hunnings calling y actions
	Liquid state	603	b it the significance of determination of surface
	& Consideration	CO2	tension by capillary rise method, drop weight and drop
	Gravimetric		to a mothode using stalagmometer
	Analysis	CO3	determination of surface tension by capillary rise
		COS	method, drop weight and drop number methods using
			stalagmometer
		CO4	Definition, Specific and molar refraction
		CO5	Understanding the concept of Gravimetric Analysis
	Solids	CO1	Basic Explanation, classification with examples-
	&Liquid	26	Smectic, nematic, cholesteric, disc shaped and polymeric
	crystals	CO2	Basic Explanation, classification with examples-
			Smectic, nematic, cholesteric, disc shaped and polymeric
		CO3	Able to solve Laws of Crystallography: Law of constancy
			of interfacial angles, Law of rational indices,
B. SC. II	Practical	CO1	Determine the amount carbonate and hydroxide
SEM			present in a mixture.
(DSC2)		CO2	Determine the amount potassium permanganate
		200	solution and determination of nitrite in a water sample
		CO3	Determine the amount chlorine in bleaching powder
	1	604	using iodometric method.
	_	CO4	chlorine in bleaching powder using iodometric method. Determination of Cu2+ as CuSCN
D CC II	OFC	CO5	Acquire knowledge about different types of sugars and
B. SC. II	OEC	CO1	their chemical structures.
SEM (OEC)	-	CO2	Identify different types of amino acids and determine
(OEC)		602	the structure of peptides.
		CO3	Explain the actions of enzymes in our body and
		- 603	interpret enzyme inhibition
	1 . H	CO4	Predict action of drugs. Depict the biological importance
		GOT	of oils and fats. Importance of lipids in the metabolism
			Differentiate RNA and DNA and their replication.
			I AN OLD TALE OF TRANSPORTED TO AN AREA STATES

			Explain production of energy in our body
B. SC. III	Solutions	CO1	Understand the importance of fundamental idea,
SEM	and Liquids	con	solutions: Ideal solutions and Raoult's law Explain the deviations from Raoult's law – non-ideal
(CBSC)		CO2	Unione procedire composition
			temperaturecomposition curves of ideal and non-ideal
			t at the Distillation of colutions
		CO3	
		603	impurity on partial miscibility of liquids. Immiscibility
			of liquids
	Electrochem	CO1	Evaluin Electrochemistry, Concept of EMF,
	istry and	COI	thermodynamics & PH of hydrogen electrode
	Phase	CO2	White the Phase Equilibrium of Water and Supner.
	Equilibrium	CO3	Explain the congruent and incongruent melting poin
	Orientation,	CO1	for a given reaction
	Alcohols and	CO2	a the deciding machanism for a reaction, explain
	Phenols	002	the importance of reaction intermediates, its role and
	richolo		techniques of generating Such Intermediates
	Spectroscop	CO1	a 1 : d. importance Intrared Specificscopy.
	yand	CO2	definition definitions of parent pears
	Aromatic		and base peak, McLafferty rearrangement with respect
	Hydrocarbo		to butyraldehyde
	ns	CO3	Explain the Aromatic Hydrocarbons.
		CO4	Explain the poly nuclear hydrocarbon.
B. SC. III	Practical	COL	Understand the effect of acid base strength Understand the effect of acid base strength order,
SEM		CO2	Understand the fate constant to see
(CBSC)			Adsorption and degree of dissociation. Explains the surface tension, viscosity and degree of
•		CO3	dissociation
		201	Study of Inorganic volumetric analysis.
		CO4	Organizing general trends in electronic configuration,
B. SC. IV	Transition	CO1	valency, color, magnetic and catalytic properties.
SEM	elements &		
(CBSC)	Coordinatio -	CO2	Interpreting the electronic spectra, oxidation state,
	n Chemistry		valency, color, magnetic of lanthanoids & actinides
		CO3	Giving description of VBT.
			l i L tamés configuration valency
	Chemistry of	CO1	Interpreting trends in electronic configuration, valency,
	d-block and		color, magnetic and catalytic properties etc of d & f
	f-block		bock elements. Understanding the chelate, Characteristics, factor
	elements	CO2	Understanding the chelate, Characteristics, factor
			affecting & importants of chelates. Categorizing the Air pollution, Water pollution, COD &
		CO3	
			BOD Deduce the derivation of the kinetic gas equation, real
	Kinetics of	CO1	Deduce the derivation of the kinetic gas equation, real
	Gases &		gas & Van der waals equation of state. Manipulate Maxwell Boltzmann distribution law &
	Conductance	CO2	Manipulate Maxwell Butzillann distribution law c
			Collision grass theory etc Understand the conductance of acid & bases
		CO3	Understand the conductance of acid & bases

			Command Last L
	Theory of Solids & Chemical Kinetics	CO1	Organizing solid, symmetry, Crystal lattice, law of Crystallography, X-rays & structures of Solids
		CO2	Understanding the concept of chemical kinetics, order & molecularity, half life of reactions etc.
		CO3	Focus collision, activated complex & qualitative treatment etc
B. SC. IV SEM (DSC4)	Practical	CO1	Differentiating the basic principles involved in classification of ions into groups in semi-micro qualitative analysis of salt mixture of inorganic salts
B. SC. V SEM	P-I (Theory)	CO1	Nomenculture, isomerisation & theories of coordination chemistry.
(CBSC)		CO2	Therotical study of gravimetric analysis.
		CO3	Types, structure,& application of inorganic polymers.
		CO4	Understanding the concept of green chemistry
		CO5	Understaing classification and aromaticity of heterocyclic compounds
		CO6	Giving description of synthetic applications & reaction mechanism. Of enolates.
		CO7	Isolation, synthesis constitution of alkaloids.
		CO8	Determination of properties of bonds rotational, vibrational spectra.
		CO9	Application of phase rule to different component systems
	P-I (Practical)	CO1:	Preparation of organic compound
	P-II (Theory)	CO1	Synthesis, significance, types.& applications of alloys, abrasives, and glass
		CO2	Manufacture, composition characteristic of fuels, cement and pigment.
		CO3	Preparation mechanism of action and application of oxidizing and redusing agents
		CO4	Principle and instrumentation of mass spectroscopy
		CO5	colour & constitution, synthesis of different dues and
		CO6	of catalyst.
		CO7	Study of general aspects of chemical equilibrium & kinetics of chain reactio
	P-II (Practical)	CO1	Volumetric analysis of iron, copper, zinc & calcium.
B. SC. VI	P-I	CO2	Experimental study of conductometric titrations.
SEM (CBSC)	(Theory)	CO1	6.CFSE calculation and properties of complexes
(CO2	eqilibria factors influencing stability of metal-ligand and chelates.
		CO3	18 electron rule with respect to OMC structure, bonding in ferrocene, zieses salt

	CO4	He and the formula of glucose and
	COA	Howorth and conformational formulae of glucose and
-	CO5	fructose there synthesis and inter combination. Classification and importance of vit A,B6 , B12 C, D & E
	COS	& synthesis of amino acids, peptides, proteins, and
		& synthesis of amino actus, pepades, proteins,
	C06	terpinoids. PE curve for BMO& ABMO & electronic transitions,
	COG	1
		dipole
-	00=	moment and its application. Determination and classification of molar masses of
	CO7	Determination and classification of motor
-		polymers by using different methods.
	CO8	Study of different photoelectric methods. Organic estimation & determination of saponification &
P-I	CO1	Organic estimation & determination of superior
(Practical)		iodine value of oils. Brief account of paper & coloumn chromatography.
P-II	CO1	Principle, instrumentation & application of different
(Theory)	CO2	Principle, instrumentation & application of animals
1		analytical methods. Study of nutrients and determination of various
	CO3	Study of nutrients and determination of
		parameters of soil nutrients.
	CO4	Electronic spectrum study of metal complexes Synthesis and classification & uses of chemotherapatic
	CO5	
		drugs.
	CO6	Manufacture & cleaning action of soaps and detergents. Study of reaction mechanism of various named
	CO7	
		reactions the study of some simple
	CO8	Basics of NMR spectroscopy in the study of some simple
		organic compounds. Types of electrochemical cells & electrodes& emf
	CO9	
		measurements
	CO10	Computing photochemical laws quantum efficiency &
		photochemical process
P-I	CO1	Gravimetric analysis of ores.
(Practical)	CO2	Experimental study of potentiometric titrations &
		colorimetric methods. By using Beers lamberts law.

Department of Chemistry

S.B.Arts & K.C.P.Science Colleges

Vijayapur.

IQAC Co-ordinator Principal,
S.B.Arts & K.C.P.Science College
Vijayapur. VIJAYAPUR.